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The continuous adjoint method for the computation of sensitivity derivatives in aerody-
namic optimization problems of steady incompressible flows, modeled through the k–e
turbulence model with wall functions, is presented. The proposed formulation leads to
the adjoint equations along with their boundary conditions by introducing the adjoint to
the friction velocity. Based on the latter, an adjoint law of the wall that bridges the gap
between the solid wall and the first grid node off the wall is proposed and used during
the solution of the system of adjoint (to both the mean flow and turbulence) equations.
Any high Reynolds turbulence model, other than the k–e one used in this paper, could also
profit from the proposed adjoint wall function technique. In the examined duct flow prob-
lems, where the total pressure loss due to viscous effects is used as objective function,
emphasis is laid on the accuracy of the computed sensitivity derivatives, rather than the
optimization itself. The latter might rely on any descent method, once the objective func-
tion gradient has accurately been computed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In aerodynamic shape optimization problems, the adjoint method computes (or, depending on the simplifications made,
approximates) the gradient of the objective function with respect to the design variables, by solving the system of adjoint
equations which are deduced from the mathematical theory for the control of systems governed by pde’s. Governing pde’s
are the flow model equations, coupled with appropriate boundary conditions. The cost of solving the system of adjoint equa-
tions is comparable to the cost of solving the flow equations, irrespective of the number of design variables, in contrast to
finite differences or the complex variable approach, [1,2]. A repetitive process, with cycles comprising the numerical solution
of the state and adjoint systems of equations, the gradient computation and a gradient-based descent step, is usually carried
out until the design converges to the optimal solution, not necessarily the global one. Alternatively, efficient one-shot ap-
proaches, [3], in which the state, adjoint and correction equations are coupled, can be used. In this paper, we restrict our-
selves to the exact computation of the objective function gradient in problems governed by flow equations based on the
wall function technique and refrain from comparing gradient-based optimization variants.

It is known that the discrete form of the adjoint equations can be obtained according to either the continuous or the dis-
crete adjoint approach. In the former, [4–7], the adjoint pde’s and their boundary conditions are derived by developing the
variation in the objective function augmented by the state (flow) equations after multiplying them by the adjoint variables.
. All rights reserved.
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The adjoint equations are, subsequently, discretized using schemes similar to those used for the state equations. On the other
hand, in the discrete adjoint method, [8–11], the state equations are discretized first and the discrete adjoint equations are
deduced from the discrete state equations. This paper is concerned only with the continuous adjoint method. We shall,
therefore, refrain from commenting upon the discrete adjoint method, unless this is absolutely necessary. Also, any compar-
ison between continuous and discrete adjoints is beyond the scope of this paper.

Given an objective function that reflects the designer’s requirements, the continuous adjoint approach starts by selecting
the flow model, namely the system of state pde’s. Dealing with turbulent flows, the state pde’s comprise the mean-flow and
turbulence model equations. An exact adjoint formulation must take into consideration variations in both of them. However,
in the majority of relevant papers based on the adjoint method, the common practice is to neglect variations in the turbu-
lence variables, [6,7,12,13]. This is usually referred to as the ‘‘frozen turbulence assumption”; neglecting variations in turbu-
lence variables makes the whole mathematical development less burdensome and reduces the number of adjoint equations
to be solved. The price to pay is the reduced accuracy in the computed gradient. Recently, the present authors proposed, [14],
the exact adjoint to the Spalart–Allmaras one-equation turbulence model [15] and quantified the loss in the gradient accu-
racy caused by omitting this extra adjoint equation. The extension of the (exact) continuous adjoint approach to the two-
equation k–e turbulence model was a prerequisite for the development of the proposed adjoint wall function technique. Note
that, to the authors knowledge, apart from [14], only a few papers account for variations in turbulence model variables and
all of them are based on the discrete adjoint approach, [16–22].

The present paper proposes a new continuous adjoint formulation for steady flow problems in which the state equations
include a high Reynolds number turbulence model based on the wall function technique, [23–26]. With the latter, the entire
turbulent boundary layer does not need to be solved and the law of the wall bridges the gap between the solid walls on
which the boundary layer is developed and the adjacent grid nodes generated with a large grid spacing. So, the state equa-
tions are solved on grids which are much coarser than those required by the low Reynolds number models, leading to less
demanding computations. High Reynolds number turbulence models are often used for industrial computations, as ‘‘every-
day” flow analysis tools. The shear stress (or, equivalently, the friction velocity), deduced from the wall functions, substitutes
the diffusion fluxes in the discretized momentum (and energy, in compressible flows) equations at nodes adjacent to the
wall, where the standard finite difference schemes cannot be applied. The adjoint to the high Reynolds turbulence model
presented in this paper introduces what should be referred to as the adjoint wall function technique, by defining and using
the so-called adjoint friction velocity. Though this paper is restricted to a specific high-Reynolds turbulence model (k–e), any
other eddy-viscosity turbulence model based on the wall function technique (such as the high-Reynolds number variant of
the Spalart–Allmaras model, [15]) could be used in place of the k–e model. Through a similar development, the adjoint equa-
tions, their boundary conditions as well as new terms in the sensitivity derivatives can be derived. The adjoint wall function
technique could even be applied to flow solvers coupled with Large Eddy Simulation (LES) models (namely, their wall func-
tions based variants, [27–30]), provided that the adjoint to the LES pde’s are available.

Without loss of generality, the present applications are restricted to duct flows. The objective function is an integral quan-
tity along the inlet to and the outlet from the flow domain, expressing the total pressure losses due to viscous flow effects.
Note that [14] dealt with the same objective function, using however the low-Reynolds Spalart–Allmaras model. Similarly to
[14], the present paper handles the objective function (symbol J, see below) as a separate term in the development of the
adjoint equations. So, the reader may readily replace J with any other objective function (see, for instance, similar works
by the same authors, [7,31]). In the absence of field integrals in J, this will lead to the same adjoint equations, different ad-
joint boundary conditions and different sensitivity derivatives.

Finally, let us make clear that this paper deals with steady flows only. Any extension to unsteady flows is expected to have
much higher memory requirements and CPU cost. However, accommodating the new adjoint wall function technique in such
an unsteady method is expected to be straightforward. Adjoint methods for unsteady flows are beyond the scope of this pa-
per and the interested reader should refer to [32,33] or [34]; the latter is a ‘‘rival” derivative-free approach for designs based
on unsteady flow considerations.
2. Development of the continuous adjoint approach

2.1. Objective function and flow equations

The objective function J to be minimized stands for the total pressure losses between the inlet (Si) to and the outlet (So)
from the flow domain. Thus,
J ¼ �
Z

Si

pþ 1
2

v2
i

� �
vknk dS�

Z
So

pþ 1
2

v2
i

� �
vknk dS ð1Þ
where p is the static pressure divided by the constant density, vi the velocity components and nk components of the normal
to the boundary outward unit vector. As already mentioned in Section 1, during the development of the adjoint equations, J
will be kept apart from the remaining terms, as much as possible. So, those who wish to replace Eq. (1) with any other objec-
tive function may certainly benefit from what follows. It should be stressed that the objective function J, Eq. (1), includes
integrals defined along boundaries (inlet, outlet) other than solid walls with respect to the shape variables of which the
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sensitivity derivatives are to be computed. This increases the complexity of the adjoint boundary conditions. For further dis-
cussion, the interested reader should refer to [31].

The flow model consists of the Navier–Stokes equations for incompressible fluids and the standard k–e turbulence model
with wall functions [35]. The mean flow equations are given by
Fig. 1.
either t
Rv
i ¼ v j

@v i

@xj
þ
@peff

@xi
� @

@xj
mþ mtð Þ @v i

@xj
þ @v j

@xi
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Rp ¼ @v j
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¼ 0 ð2Þ
where m and mt are the laminar and turbulent viscosity coefficients and xi are the Cartesian coordinates. According to the Ein-
stein convention, repeated indices imply summation.

The high Reynolds k–e model equations read
Rk ¼ v j
@k
@xj
� @

@xj
mþ mt

Prk

� �
@k
@xj

� �
� Pk þ e ¼ 0

Re ¼ v j
@e
@xj
� @

@xj
mþ mt

Pre

� �
@e
@xj

� �
� c1Pk

e
k
þ c2

e2

k
¼ 0 ð3Þ
where k is the turbulent kinetic energy, e is the turbulent energy dissipation and
Pk ¼ sij
@v i

@xj
¼ mt

@v i

@xj
þ @v j

@xi

� �
@v i

@xj
ð4Þ
is the production of k. The turbulent viscosity coefficient mt is given by
mt ¼ cl
k2

e
ð5Þ
The model constants are cl = 0.09, c1 = 1.44, c2 = 1.92, Prk = 1.0, Pre = 1.3 [35]. In Eq. (2), peff stands for pþ 2
3 k.

In internal aerodynamics, Dirichlet conditions are imposed on vi, k and e and zero Neumann condition for p at the inlet. At
the outlet, zero Neumann conditions are imposed on vi, k and e whereas the exit pressure is fixed.

In this paper, Eqs. (2) and (3) are solved on unstructured grids with triangular elements using a vertex-centered, finite
volume scheme. The pseudo-compressibility approach is used, [36]. This is based on the Roe’s approximate Riemann solver,
[37], MUSCL interpolation for computing second-order accurate convection terms and the P1 element assumption (constant
gradient of the flow variables within each grid element) for the diffusion terms.

The integration of the governing equations over the finite volumes leads to the balance of inviscid and viscous fluxes
crossing their boundaries along with volume integrals of source terms, if any. Apart from the boundary nodes where Dirich-
let conditions are imposed, any other boundary condition is satisfied in the weak sense, by modifying the fluxes crossing the
corresponding finite volume boundary segments (ab; Fig. 1)

In this paper, the wall function technique with slip velocities is applied [23–26]. According to this model, the ‘‘real” solid
wall is assumed to lie at distance D underneath the grid boundary marked as ‘‘solid wall”; the governing equations are dis-
cretized over the finite volume of the ‘‘solid wall” node P (Fig. 1) by taking into consideration (in the weak sense) that the
velocity at P is tangent to the wall and conforms to the so-called wall functions that bridge the gap between P and the ‘‘real”
wall. Along the (‘‘solid wall”) boundary segment ab, the convective flux is zero (no-penetration condition) whereas the dif-
fusion one depends on the friction velocity vs, defined by
v2
s ¼ ðmþ mtÞ

@v i

@xj
þ @v j

@xi

� �
njti ð6Þ
and computed via the law of the wall. In the sake of convenience, v2
s instead of the signed (but not differentiable at vs = 0)

quantity vs jvsj will be used.
In the log law region and the viscous sublayer, the tangential to the wall velocity profile (viti, where ti are the tangent unit

vector components; abbreviated to vt) in wall coordinates yþ ¼ Dvs
m ; vþ ¼ v t

vs

� �
results from
A 2D example: a vertex-centered finite volume XP associated with the boundary node P. Segment ab of the finite volume boundary may belong to
he inlet/outlet boundaries or the ‘‘solid wall” boundary, depending on the context of the section referring to this figure.
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vþ ¼ 1
j lnyþ þ B; yþ P yþc

vþ ¼ yþ; yþ < yþc
ð7Þ
where yþc is deduced from solving yþc ¼ 1
j lnyþc þ B; j ¼ 0:41 and B = 5.5. Boundary conditions for k and e at P (Fig. 1) are de-

fined depending on whether P lies within the log law region or the viscous sublayer. These are as follows [23–26]:
kP ¼
v2

sffiffiffiffiffi
cl
p ; eP ¼

v3
s

jD
; yþ P yþc kP ¼

v2
sffiffiffiffiffi
cl
p

yþ

yþc

� �2

; eP ¼ k
3
2
P

1þ 5:3mffiffiffiffi
kP

p
D

jc
�3

4
l D

; yþ < yþc ð8Þ
2.2. Augmented objective function

By introducing the adjoint variables ui, q, ka and ea, corresponding to the primal (or state) variables vi, p, k and e, respec-
tively, the augmented objective function is
L ¼ J þ
Z

X
uiR

v
i þ qRp þ kaRk þ eaRe

� �
dX ð9Þ
where J is given by Eq. (1) and X denotes the flow domain. Using the Leibniz integral rule the sensitivities of the L with re-
spect to the design variables bm read
dL
dbm
¼ dJ

dbm
þ
Z

X
ui

dRv
i

dbm
þ q

dRp

dbm
þ ka

dRk

dbm
þ ea

dRe

dbm

 !
dXþ

Z
X

uiR
v
i þ qRp þ kaRk þ eaRe

� � dðdXÞ
dbm

ð10Þ
Since, in Eq. (10), the last two integrals are all equal to zero, computing dJ
dbm

is equivalent to computing dL
dbm

. The adjoint vari-
ables ui, q, ka and ea act as Lagrange multipliers which are to be computed at all grid nodes by solving the adjoint pde’s. The
latter can be derived after identifying and eliminating all field integrals in Eq. (10) that depend on @v i

@bm
; @p
@bm

; @k
@bm

and @e
@bm

. The
elimination of the corresponding boundary integrals gives rise to the adjoint boundary conditions. The remaining terms in
Eq. (10) depend on the previously computed ui, q, ka and ea fields and stand for the derivatives of J with respect to bm (sen-
sitivity derivatives), [7,31]. By taking into account that [7]
dðdXÞ
dbm

¼ @

@xk

dxk

dbm

� �
dX ð11Þ
and by expressing the total sensitivities dðÞ
dbm

in terms of the partial ones @ðÞ
@bm

and the sensitivities dxk
dbm

of grid nodes, namely
dðÞ
dbm
¼ @ðÞ
@bm
þ @ðÞ
@xk

dxk

dbm
ð12Þ
the application of the Green–Gauss theorem leads to
dL
dbm
¼ dJ

dbm
þ
Z

X
ui
@Rv

i

@bm
þ q

@Rp

@bm
þ ka

@Rk

@bm
þ ea

@Re

@bm

 !
dXþ

Z
S
ðuiR

v
i þ qRp þ kaRk þ eaReÞ dxk

dbm
nk dS ð13Þ
where S is the boundary of X. By considering the imposed boundary conditions and the invariance of the inlet/outlet grid

nodal coordinates with respect to the design variables dxk
dbm

			
Si ;So

¼ 0
� �

, the sensitivities of the objective function become
dJ
dbm
¼ �

Z
Si

@p
@bm

vknk dS�
Z

So

v i
@v i

@bm
vknk þ

1
2

v2
i
@vk

@bm
nk

� �
dS ð14Þ
The partial sensitivities of the mean flow and turbulent model equations, which appear in the field integral of Eq. (13), are
given by
@Rv
i

@bm
¼ @v j

@bm

@v i

@xj
þ v j

@

@xj

@v i

@bm

� �
þ @

@xi

@peff

@bm

� �
� @

@xj

@mt

@bm

@v i

@xj
þ @v j

@xi

� �� �
� @

@xj
ðmþ mtÞ

@
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� �
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ð15aÞ

@Rp
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The sensitivities of mt are deduced from Eq. (5),
@mt

@bm
¼ 2cl

k
e
@k
@bm
� cl

k2

e2

@e
@bm

ð16Þ
2.3. Adjoint formulation

It is a matter of mathematical rearrangements, based on the application of the Green–Gauss theorem and the use of Eqs.
(15a) and (16), to express Eq. (13) as follows:
dL
dbm
¼ dJ

dbm
þ
Z

X
Ru

i
@v i

@bm
þ Rq @p

@bm
þ Rka
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@bm
þ Rea
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� �
dXþ
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i
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þ Dq @p
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� �
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�
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k

dxk
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dS
or, since in the examined problems, dJ
dbm

is given by Eq. (14),
dL
dbm
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Z
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dS ð17Þ
where S = Sw [ Si [ So. The last integral is written only along Sw, since dxk
dbm

			
Si ;So

¼ 0 along the inlet and outlet. The various sym-
bols appearing in Eq. (17) are explained below:
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2.4. Field adjoint equations

Starting from Eq. (17), the field mean flow and turbulence adjoint equations are derived by eliminating all field integrals
depending on the sensitivities of the mean flow and turbulence variables. Thus, the adjoint to the governing field equations
are
Ru
i ¼ 0 ð19aÞ

Rq ¼ 0 ð19bÞ
Rka ¼ 0 ð19cÞ
Rea ¼ 0 ð19dÞ
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2.5. Inlet conditions

At the inlet, where the nodal coordinates are fixed dxi
dbm
¼ 0

� �
, based on Eq. (12), the imposed Dirichlet conditions on vi, k

and e imply @v i
@bm
¼ @k

@bm
¼ @e

@bm
¼ 0; so, the corresponding integrals along Si in Eq. (17) automatically vanish. In the same equation,

integrals that include @p
@bm

can be eliminated by setting
R
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ðDq � vknkÞ @p

@bm
dS ¼ 0, which leads to
uini ¼ v ini ð20Þ
Eq. (20) states that the normal (to the inlet boundary) primal and adjoint velocity components should be equal. Since the
inlet velocity is given, Eq. (20) implies that ui ni is also known in advance. Next step is to eliminate the integrals including
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� �
and @
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on the values 1 and 2), it can be shown through the use of the continuity equation, that
uknk
@

@bm

@v i

@xj
nj

� �
ni þ

@v j

@xi
ni

� �
nj

� �
¼ 2uknk

@

@bm

@v i

@xj
njni

� �
¼ �2uknk

@

@bm

@v i

@xj
tl

jt
l
i

� �
¼ 0 ð21Þ
Consequently, it suffices to zero the tangential component (s) of the adjoint velocity at the inlet, i.e. uitl
i ¼ 0. To sum up, the

adjoint velocity vector at the inlet is known, giving rise to Dirichlet conditions for its components ui.
Thus far, inlet boundary conditions for all the adjoint variables but the adjoint pressure q have been found. Numerical

tests proved that a zero Neumann condition may safely be imposed on q. This is compatible with the zero Neumann condi-
tion imposed on p along the same boundary. However, since there is no condition derived for q, we are free to impose any
other condition on q at the inlet, provided that this does not cause numerical difficulties.

2.6. Outlet conditions

At the outlet, p is given and fixed and @v i
@xj

nj ¼ @k
@xj

nj ¼ @e
@xj

nj ¼ 0 (due to the zero Neumann conditions imposed on the veloc-
ity components, k and e). Therefore, from the boundary integrals of Eq. (17), written along So (instead of S), those which in-

clude @p
@bm

; @
@bm

@v i
@xj

� �
nj, @

@bm
ð@k
@xj
Þnj and @

@bm
ð @e
@xj
Þnj, automatically vanish (recall, nj does not depend on bm). To eliminate the integral

(along So) which includes @v i
@bm

, the following conditions must be satisfied:
�v ivknk �
1
2

v2
kni þ Du

i ¼ 0
which, due to Eq. (18e), can be written as
qni � ðmþ mtÞ
@ui

@xj
þ @uj

@xi

� �
nj þ 2 ka þ eac1

e
k

� �
mt

@v i

@xj
þ @v j

@xi

� �
nj � v jujni � v juinj ¼ �v ivknk �

1
2

v2
k ni ð22Þ
It is convenient to express Eq. (22) in terms of the normal and tangential components of the adjoint velocity (ui ni and uitl
i,

respectively). The following equations can readily be derived
uitl
iv jnj þ mþ mtð Þ @ui

@xj
þ @uj

@xi

� �
njtl

i � 2 ka þ eac1
e
k

� �
mt

@v i

@xj
þ @v j

@xi

� �
njtl

i ¼ v itl
ivknk ð23aÞ

ujv j þ uiniv jnj þ ðmþ mtÞ
@ui

@xj
þ @uj

@xi

� �
njni � q� 2 ka þ eac1

e
k

� �
mt

@v i

@xj
þ @v j

@xi

� �
njni ¼ v inivknk þ

1
2

v2
k ð23bÞ
Dealing with duct flows, we may easily assume that the outlet boundary is a straight line (2D) or a plane (3D flows). Without
loss in generality, we may also assume that, along So, the unit normal vector is aligned with the x1 axis. Such an assumption
facilitates the presentation of how the term (in Eq. (17)) that depends on @

@bm

@v i
@xj
þ @v j

@xi

� �
nj or only @

@bm
ð@v j

@xi
Þnj since @v i

@xj
nj ¼ 0, can

be eliminated. For a straight or plane boundary, either this is automatically zeroed (on condition that there is uniform flow at
the outlet, i.e. without the presence of a solid wall and the boundary layer developed along it) or the conditions
uitl
i ¼ 0 ð24Þ
must be imposed.
One may use Eqs. (23) in more than one ways, depending on whether Eq. (24) must also be satisfied or not. One may solve

Eq. (23a) for the tangential adjoint velocity uitl
i and Eq. (23b) for the adjoint pressure q. In such a case, any condition could be

imposed on the normal adjoint velocity ui ni. Alternatively, one may arbitrarily set q = 0 along the outlet and, then, solve Eqs.
(23a) and (23b) for uitl

i and ui ni, respectively. Both approaches have been programmed and tested, among other, on the cases

examined in the Case Studies section. Even in the case @
@bm
ð@v j

@xi
njÞ–0, they produced practically identical results (i.e. sensitivity

derivatives). In case Eq. (24) should be satisfied, the outlet tangential adjoint velocity is set to zero, Eq. (23a) is then solved
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for @ui
@xj

nitl
j (which, through integration and after defining arbitrarily the ui ni value at one point along So, gives the ui ni values

over the outlet) and finally, Eq. (23b) is solved for the adjoint pressure q. This third outlet boundary condition scenario led
also to the same results as before.

Finally, the elimination of the integrals along So which depend on @k
@bm

and @e
@bm

in Eq. (17), makes it necessary to impose
Dka ¼ 0; Dea ¼ 0
along the outlet. By using Eqs. (18g) and (18h), we get
� 2cl
k
e

@v i

@xj
þ @v j

@xi

� �
uinj þ

2
3

ujnj þ v jnjka þ mþ mt

Prk

� �
@ka

@xj
nj ¼ 0 ð25aÞ

cl
k2

e2

@v i

@xj
þ @v j

@xi

� �
uinj þ v jnjea þ mþ mt

Pre

� �
@ea

@xj
nj ¼ 0 ð25bÞ
Eq. (25a) can be solved for ka (with frozen @ka
@xj

nj, computed using the current ka field) and Eq. (25b) for ea (with frozen @ea
@xj

nj),
during the iterative solution of the adjoint turbulence variable equations.

It is also helpful to associate the outlet adjoint boundary conditions with the finite volume discretization scheme at the
outlet nodes. Let XP be the finite volume centered at an outlet node P and surrounded by its boundary SP. The latter com-
prises segments lying in the interior of the flow domain and, also, segment ab lying along the outlet boundary, Fig. 1. The
integration of the adjoint momentum equations Ru

i ¼ 0 (where Ru
i are given by Eq. (18a)) over XP leads to
Z

SP

qni � ðmþ mtÞ
@ui

@xj
þ @uj

@xi

� �
nj þ 2 ka þ eac1

e
k

� �
mt

@v i

@xj
þ @v j

@xi

� �
nj � v jujni � v juinj

� �
dS

þ
Z

XP

uj
@v j

@xi
þ ka

@k
@xi
þ ea

@e
@xi

� �
dX ¼ 0 ð26Þ
It is straightforward to rewrite Eq. (26), by replacing the part of its first integral written along ab, i.e.R
ab½qni � ðmþ mtÞ @ui

@xj
þ @uj

@xi

� �
nj þ 2 ka þ eac1

e
k

� 
mt

@v i
@xj
þ @v j

@xi

� �
nj � v jujni � v juinj�dS, by

R
ab �v ivknk � 1

2 v2
k ni

� 
dS. Based on the equa-

tion above, it seems that, according to the finite volume scheme used, all integrals along the outlet ab segment depend exclu-
sively on the known velocity field.

2.7. ‘‘Wall” conditions

At the ‘‘wall” boundary, in order to make dL
dbm

(Eq. (17)) independent of @
@bm

@k
@xj

� �
and @

@bm

@e
@xj

� �
, the adjoint turbulent variables

should be zeroed, ka = ea = 0. For dL
dbm

to be independent of @p
@bm

, the adjoint no-penetration condition ui ni = 0 must be met. The
remaining terms provide the adjoint flux (es) at the ‘‘wall” and the sensitivity derivatives, as follows:
dL
dbm
¼
Z

Sw

Du
i
@v i

@bm
þ Dka

@k
@bm
þ Dea

@e
@bm

� �
dS�

Z
Sw

ðmþ mtÞui
@

@bm

@v i

@xj
þ @v j

@xi

� �
nj dSþ

Z
Sw

T1
k

dxk

dbm
dS ð27Þ
It can be shown that
ðmþ mtÞui
@

@bm

@v i

@xj
þ @v j

@xi

� �
nj dS ¼ T3 dvs

dbm
þ T4

i
dni

dbm
þ T5

i
dtl

i

dbm
þ T2

k
dxk

dbm
ð28Þ
where
T3 ¼ uktl
k 2vs þ

v2
s

mþ mt
cl

k
e

k
e

de
dvs
� 2

dk
dvs

� �� �

T4
i ¼ �uktl

kðmþ mtÞ
@v i

@xj
þ @v j

@xi

� �
tl

j

T5
i ¼ �uktl

kðmþ mtÞ
@v i

@xj
þ @v j

@xi

� �
nj

T2
k ¼ �ðmþ mtÞuqtl

qtl
inj

@2v i

@xj@xk
þ @2v j

@xi@xk

 !
ð29Þ
while dk
dvs

and de
dvs

are deduced from Eq. (8).
To handle the term in Eq. (27) that depends on @v i

@bm
along the ‘‘wall”, the no-penetration condition for the primal velocity

(vi ni = 0) and the law of the wall (Eq. (7)) should be taken into account, leading to
Du
i
@v i

@bm
¼ T6 dvs

dbm
þ T7

i
dtl

i

dbm
þ T8

k
dxk

dbm
ð30Þ
where
T6 ¼ Du
i tl

icv ; T7
i ¼ Du

i vktl
k; T8

k ¼ �Du
i
@v i

@xk
ð31Þ
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and
cv ¼
1
j lnyþ þ Bþ 1

j ; yþ P yþc
2vsD

m ; yþ < yþc

(
ð32Þ
Boundary integrals in Eq. (27) that depend on @k
@bm

and @e
@bm

are handled in a similar way, resulting to the expressions
Dka @k
@bm

¼ T9 dvs

dbm
þ T10

k
dxk

dbm

Dea
@e
@bm

¼ T11 dvs

dbm
þ T12

k
dxk

dbm

ð33Þ
where
T9 ¼ Dka
dk
dvs

; T10
k ¼ �Dka

@k
@xk

; T11 ¼ Dea
de
dvs

; T12
k ¼ �Dea

@e
@xk

ð34Þ
Eq. (27) is rewritten as
dL
dbm
¼
Z

Sw

ðT6 þ T9 þ T11 þ T3Þ dvs
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dSþ

Z
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T7
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� � dtl
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Z
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Z
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kÞ

dxk
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ð35Þ
Since the sensitivity derivatives must be independent of dvs
dbm

, according to Eq. (35), the condition
T6 þ T9 þ T11 þ T3 ¼ 0 ð36Þ
should hold. Similar to the wall function technique and the definition of the friction velocity vs, (Eq. (6)), the adjoint friction
velocity associated with each ‘‘wall” grid node is defined by
u2
s ¼ ðmþ mtÞ

@ui

@xj
þ @uj

@xi

� �
njti ð37Þ
Thus, condition (36) leads to
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nj

de
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� �
ð38Þ
which is used to compute the adjoint viscous fluxes at the ‘‘wall” nodes.

2.8. Sensitivity derivatives

By satisfying condition (38), the first integral in Eq. (35) vanishes and the remaining terms give the sensitivity derivatives
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Further processing of Eq. (39) reduces the order of the spatial derivatives to be computed. The last two integrals can be writ-
ten as
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By substituting Eqs. (40) and (41) into Eq. (39) and rearranging, one gets
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where the operator LðmÞi ðÞ is defined by
LðmÞi ðÞ �
@ðÞ
@xi

dxk

dbm
nk �

@ðÞ
@xk

dxk

dbm
ni ð43Þ
or
LðmÞi ðÞ ¼
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@xk
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kðnjtl

i � tl
jniÞ

dxj

dbm
ð44Þ
Eq. (44) expresses the LðmÞi ðÞ operator, applied to any scalar quantity, as the product of its tangential derivative along the
‘‘wall” @ðÞ

@t and the quantity ðnjtl
i � tl

jniÞ
dxj

dbm
. In a 2D case, for instance, using n and t (where n is the unit normal vector which

is perpendicular to the ‘‘wall” and points away from the flow region bounded by Sw and t is the tangential unit vector), it can
be shown that
LðmÞ1 ðÞ ¼
@ðÞ
@t

dx2

dbm
; LðmÞ2 ðÞ ¼ �

@ðÞ
@t

dx1

dbm
ð45Þ
It is evident that, using Eq. (45) in (42), the computational accuracy increases noticeably; the majority of the computations
are based on the integration of the tangential derivatives along the wall. This is absolutely clear for the three last integrals in
Eq. (42); using Eq. (45), the integration of terms involving @v i

@t or @p
@t is due.

Also, using Eq. (8) (if yþ P yþc ), we may write
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� �
dS ð46Þ
which can also be computed with accuracy by integrating quantities computed along the ‘‘wall”.
The previous analysis of some indicative terms from Eq. (42) demonstrates that, using Eq. (44), the sensitivity derivatives

are computed with excellent numerical accuracy.
3. Case studies

To assess the accuracy of the computed sensitivity derivatives, two duct flow cases are studied. In each case, the sensi-
tivity derivatives computed by the present method are compared with those by finite differences. The objective function is
the one given in Eq. (1). Since the accuracy with which the sensitivity derivatives are computed is of key importance in this
paper, it should become clear that the state (mean flow and turbulence) equations presented in Section 2 along with the grid
and the numerical scheme used are considered to provide ‘‘accurate” flow fields. Consequently, sensitivity derivatives com-
puted by finite differences with calls to the aforementioned flow solver are used as reference values, for the purpose of val-
idation. Then, once the search direction has been computed by the proposed method, a steepest descent algorithm is used to
optimize the duct shapes for minimum total pressure losses, at predefined flow conditions. Note that any other gradient-
based algorithm (such as a quasi-Newton method) could be used instead. It is beyond the scope of this paper to compare
the various descent algorithms and the ensuing discussion focuses on the accuracy of the computed derivatives.

For the first case, an axial diffuser (divergent duct) is considered. Even if we aim at designing a symmetrical duct and the
starting geometry is symmetrical too, the whole duct is modeled without resorting to symmetry conditions. Only its lower
wall is parameterized; the upper one is mirrored. The flow is turbulent with Reynolds number based on the inlet duct height
equal to Re = 1 � 106. Unstructured grids are used with 8895 nodes and 17264 triangular elements. The non-dimensional
distance of the first nodes off the wall is well above unit (average value of the order of 100). The part of the solid wall shape
to be optimized is parameterized using five Bézier control points. The upstream and downstream extensions of the flow do-
main are not affected by the parameterization and so do the inlet and outlet cross-sections. Hence, the boundary nodes along
the straight wall extensions and the inlet/outlet straight segments are fixed. The variables bm, with respect to which the sen-
sitivity derivatives of the objective function are computed, are the x and y coordinates of all but the first and last Bézier con-
trol points of each side.
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Each flow solution costs about 5 min in a 64 bit, Quad Core Xeon processor when each adjoint solutions cost �5.6 min.
Though, usually, the computational cost of the adjoint solution is slightly less than that of the flow solution (about 80–
90%) due to the linearity of the latter, the present adjoint code is slightly more expensive since the adjoint boundary con-
dition at the wall (adjoint friction velocity) is more complex. Thus, the computational cost of the adjoint approach was
Fig. 2. Axial diffuser, starting shape. (Top) Primal (upper half) and adjoint (lower half) velocity magnitude jvj contours. (Bottom) Primal (top half) and
adjoint (lower half) pressure p contours.
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now �110% of the cost for the flow solution. The flow equations were converged by almost 12 orders of magnitude using a
point-implicit Jacobi solver.

In Fig. 2, a close-up view of the primal and adjoint velocity magnitude and pressure contours at the divergent part of the
starting symmetrical duct geometry are shown. The flow remains attached, allowing the use of wall functions for its mod-
eling. The velocity is decreased along the length of the diffuser and so does the adjoint velocity. Since the static pressure is
increased, the adjoint pressure is increased too. The distribution of the adjoint wall stress, expressed by the (squared) adjoint
friction velocity u2

s along the divergent part of the duct can be seen in Fig. 3 along with that of the primal friction velocity vs.
A useful observation concerning the role of Eq. (38) can be gleaned from the comparison of these two distributions. For the
sake of convenience, Eq. (38), which is rich with meaning, can be written as u2

s ¼ f ðuktl
kÞ, by ignoring the last two terms

including dk
dvs

and de
dvs

. This simplification, which was not used during the numerical computations, can be ascertained by
the examination of the numerical results. Given that the tangent to the wall adjoint velocity uk tk is only slightly reduced
in the divergent part (recall the application of slip conditions along the ‘‘walls”), u2

s remains almost proportional to vs and
this can clearly be seen in Fig. 2. Both friction velocities are decreased in a similar manner, reflecting the flow deceleration.

In Fig. 4, the contours of k, ka, e and ea along the divergent part of the diffuser are plotted. One may see the ‘‘usual” peaks in
the k and e fields close to the end of the divergent part of the duct, associated with peaks in the adjoint ka and ea values up-
stream, i.e. close to the start of diffusion. The normal to the wall distributions of the adjoint turbulence variables at several
positions along the duct walls are shown in Fig. 5. In this figure, the adjoints ka and ea bear high values in the proximity of the
wall and resemble to the k and e behavior in this region.

For a given diffuser shape, which is then used as the starting shape during the optimization, the sensitivity derivatives of J
with respect to the six design variables bm, computed using the proposed adjoint approach and finite differences, are shown
and compared in Fig. 6 and Table 1.

The comparisons prove that the sensitivity derivatives computed by the proposed adjoint approach are very close to the
finite difference values. Small deviations exist only at the design variables with respect to which the objective function is
rather insensitive (i.e. the corresponding sensitivity derivatives take on small values). To prove the necessity of the complete
adjoint approach to the wall functions, an incomplete adjoint formulation was also set up. Based on the state equations, the
mean flow and the turbulence model equations are strongly coupled through the law of the wall. For this reason, building an
incomplete adjoint method is not straightforward as, for instance, is the ‘‘frozen turbulence” assumption in case a low-Rey-
nolds turbulence model is in use. In our case, the incomplete approach assumed that k, e and vs (not, however, vi) are invari-
ant with respect to the design variables. The sensitivity derivative values computed using the incomplete adjoint approach
are shown in Table 1 (marked with FT) and differ noticeably from those computed by the complete adjoint method.

Also, due to the fact that the finite-differences approach is well known for its sensitivity with respect to the selected step
size (eps) value a relevant investigation is shown in Table 2. The conclusion drawn is that the computed sensitivity deriv-
atives (as in Table 1, marked with FD) are independent of the step size value and, thus, absolutely dependable.

As mentioned above, the six design variables correspond to the coordinates of the three internal Bézier control points (de-
noted by CP1, CP2 and CP3, numbered from the left along the x axis, Fig. 6). Several comments can be made on the sign and
value of each derivatives which are all in accordance with our qualitative expectations. For instance, if the CP1.x value is in-
creased (i.e. CP1 moves in the positive x-direction, see Fig. 8), the steepness of the duct wall becomes pronounced and the
viscous losses are increased too. This clearly explains the positive sign of the first sensitivity derivative in Fig. 6. Just in the
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Fig. 3. Axial diffuser, starting shape (not in scale). (Left) Squared adjoint friction velocity u2
s distribution. (Right) Primal friction velocity vs distribution.



Fig. 4. Axial diffuser, starting shape. (Top) Primal k (upper half) and the adjoint ka (lower half) contours. Bottom: primal e (top-half) and the adjoint ea

(lower half) contours.
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opposite way, a small increase in CP3.x results to locally milder diffusion and less losses; this agrees perfectly with the neg-
ative sign of the third derivative. Also, increasing the value of CP1.y is another way of making the duct steeper in its front part
and certainly explains the positive sign of the fourth sensitivity derivative. As far as CP3.y is of concern, this corresponds to a



Fig. 5. Axial diffuser, starting shape. Adjoint ka (top) and ea (bottom) normal to the wall distributions at four different positions along the divergent part of
the lower wall.

Fig. 6. Axial diffuser, starting shape. Sensitivity derivatives (left) with respect to the design variables (right).

Table 1
Axial diffuser: sensitivity derivative values computed using the proposed adjoint approach (AV), the adjoint approach with frozen turbulence (FT) and finite
differences with eps = 10�5 (FD).

dF
db1

103 dF
db2

103 dF
db3

103 dF
db4

103 dF
db5

103 dF
db6

103

AV 0.809111 �0.193240 �0.494843 8.715816 0.920189 �1.804938
FT 0.368930 �0.480133 �0.481642 1.565383 �1.720387 �1.680488
FD 1.079481 �0.260322 �0.708775 8.684181 1.067217 �1.888245
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negative derivative value since, by increasing CP3.y, losses are expected to decrease. Finally, the second free Bézier control
point has almost neutral behavior (i.e. it is almost insignificant for this particular diffuser shape) as one may easily guess by
examining Fig. 8.

Using the proposed method for the computation of exact sensitivity derivatives, an optimization procedure based on the
steepest descent method is carried out and its performance is shown in Fig. 7. The starting and final (deduced upon comple-
tion of the optimization loop) duct shapes are illustrated in Fig. 8 along with the corresponding Bézier control points. As ex-
pected, the optimal shape has a milder wall slope.



Table 2
Axial diffuser: sensitivity derivative values computed using finite differences with different values of the step size eps.

eps dF
db1

103 dF
db2

103 dF
db3

103 dF
db4

103 dF
db5

103 dF
db6

103

10�3 1.079663 �0.260377 �0.708893 8.735602 1.076892 �1.886743
10�4 1.079481 �0.260326 �0.708780 8.684572 1.067312 �1.888232
10�5 1.079481 �0.260322 �0.708775 8.684181 1.067217 �1.888245
10�6 1.079481 �0.260322 �0.708776 8.684176 1.067216 �1.888246
10�7 1.079481 �0.260321 �0.708776 8.684176 1.067217 �1.888245
10�8 1.079480 �0.260315 �0.708758 8.684188 1.067220 �1.888238
10�9 1.079733 �0.260236 �0.708880 8.684050 1.066874 �1.888362
10�10 1.080321 �0.260508 �0.708773 8.684650 1.065857 �1.888672
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Fig. 7. Axial diffuser. Reduction of the objective function value (total pressure losses between the inlet and the outlet) during the optimization cycles.

Fig. 8. Axial diffuser. The starting and final lower wall shapes in enlarged scale ordinate axis to highlight the modification in shape. The corresponding
Bézier design variables of each shape are also presented.

Fig. 9. Curved duct, starting shape. Primal (top) and adjoint (bottom) velocity magnitude (jvj and juj, respectively) contours.
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Fig. 10. Curved duct, starting shape, not in scale. (Left) Squared adjoint friction velocity u2
s distributions along the upper and lower walls, in the vicinity of

the bend. (Right) Primal friction velocity vs distribution.

Fig. 11. Curved duct, starting shape. Adjoint ka (top) and adjoint ea (bottom) contours.

Fig. 12. Curved duct, starting shape. Sensitivity derivatives with respect to the design parameters. Control points 1–3 correspond to the lower wall, while
4–6 to the upper one.
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In the second test case, the turbulent flow in a S-shaped duct is examined. The Reynolds number based on the inlet duct
height is equal to Re = 3 � 104. The parametrization of the duct is carried out using ten Bézier control points; half of them are
used to model the upper and the other half the lower wall of the duct. Six out of the 10 control points (i.e. three on each side)
are allowed to vary in both the x and y directions. An unstructured grid with 4215 nodes and 7848 triangular elements is
used and the non-dimensional distance of the first nodes off the wall is, y+, is close to 40 for all wall nodes. The primal
and the adjoint velocity fields are shown in Fig. 9. The distribution of the squared adjoint friction velocity, u2

s , is shown in
Fig. 10 (left) next to the primal friction velocity distribution (right). Using these figures, we may reconfirm the conclusions
drawn in the first case. Along the curved walls, the proportionality between u2

s and vs, as dictated by Eq. (38), can also be
reconfirmed. The solution of the flow equations costs about 3 min on a 64 bit Quad Core Xeon processor whereas that of
the adjoint equations costs as much as 3.5 min, using a point-implicit Jacobi solver. Finite differences have also been checked
to be independent of the step size eps value used. This study is similar to that presented in the first case and is omitted
herein.
Table 3
Curved duct: sensitivity derivative values computed using the proposed adjoint approach (AV), the adjoint approach with frozen turbulence (FT) and finite
differences with eps = 10�5 (FD).

dF
db1:x

10�2 dF
db2:x

10�2 dF
db3:x

10�2 dF
db1:y

10�2 dF
db2:y

10�2 dF
db3:y

10�2

AV 0.132350 0.146288 0.138355 1.408965 1.338328 1.383206
FT 0.079660 0.092165 0.080026 0.646869 0.657732 0.680766
FD 0.134748 0.155444 0.149410 1.335599 1.371520 1.504939

dF
db4:x

10�2 dF
db5:x

10�2 dF
db6:x

10�2 dF
db4:y

10�2 dF
db5:y

10�2 dF
db6:y

10�2

AV �0.104727 �0.123075 �0.133411 �1.303809 �1.293449 �1.439183
FT �0.035169 �0.049470 �0.065510 �0.499948 �0.594848 �0.746616
FD �0.131045 �0.153260 �0.146802 �1.354187 �1.369399 �1.527819
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Fig. 13. Curved duct. Reduction of the objective function value (total pressure losses between the inlet and the outlet) in the course of the optimization.
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Fig. 14. Curved duct. Starting and final (optimal) duct shapes.
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Moreover, in Fig. 11, the computed fields of the adjoint turbulence variables ka and ea are presented. In Fig. 12 and Table 3,
it is shown that the sensitivity derivatives of J, computed using the proposed adjoint approach and finite differences, are in
excellent agreement and there are differences between them and the values computed by the incomplete adjoint approach.
As in the first test case, an optimization was carried out, employing the computed sensitivity derivatives in a steepest des-
cent algorithm. The convergence history of the objective function in each optimization cycle is shown in Fig. 13. The starting
and final duct shapes, after the 100 steepest-descent cycles (based on exact derivatives but not necessarily the optimal des-
cent step) are plotted in Fig. 14.

4. Conclusions – generalization of the method

The continuous adjoint method has been extended to cases in which the state equations are based on high Reynolds num-
ber turbulence models and the wall function technique. Through the introduction and use of the adjoint law of the wall, the
adjoint system of pde’s can be treated similarly to the state equations, by avoiding the differentiation of the adjoint variables
close to the solid walls. The proposed adjoint formulation is exact, as demonstrated using the two examined test problems
where the comparison of the so-computed sensitivity derivatives with finite differences is excellent. This paper provided a
thorough study of the adjoint (mean flow and turbulence) inlet–outlet boundary conditions. Along the outlet, in particular,
alternative ways to impose boundary conditions, with indistinguishable effects on the computed sensitivities, were
described.

The proposed method can easily be extended to other functionals and/or eddy-viscosity type turbulence models other
than the k–e one, still based on the wall function technique. Also, this paper employed the wall function technique by assum-
ing that the ‘‘real” solid wall lies at a user-defined distance underneath the grid boundary (marked as ‘‘solid wall”, through-
out this paper) where slip conditions (non-zero velocity driven by the friction velocity computed via the wall functions) are
imposed. However, this is not restrictive at all; the reader may adjust the proposed formulation to the alternative wall func-
tion variant which employs no-slip conditions at the boundary nodes (which, thus, coincide with the real solid wall). In such
a case, it is expected that different adjoint boundary conditions and a different definition of the adjoint friction velocity will
be derived. From the discretization point of view, switching from vertex-centered to cell-centered finite volume schemes is
also possible, despite the unavoidable changes to the way adjoint boundary conditions at the solid walls are employed. Fi-
nally, though we dealt with an objective function which comprises boundary integrals along the inlet and the outlet of the
domain, the proposed method can be used with any other objective functions. For instance, in inverse design problems or
drag minimization problems, where the objective function consists of integrals along the solid walls. This will introduces
some extra terms (and eliminate some other) that can be taken into consideration with no extra difficulties.
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